수소전지 수명 향상 연구 '주목' (Research on Improving Hydrogen Fuel Cells Lifespan ‘In the Spotlight’) | |||
작성자 | 대외협력과 | 작성일 | 2024-08-29 |
조회수 | 402 |
수소전지 수명 향상 연구 '주목' (Research on Improving Hydrogen Fuel Cells Lifespan ‘In the Spotlight’) | |||||
대외협력과 | 2024-08-29 | 402 |
국립부경대·재료硏·GIST, 수소연료전지 수명 향상 기술 개발
- 신 탄소물질 전극 첨가제 개발 … 고분자전해질연료전지 내구성 크게 높여
△ 연구팀 사진(왼쪽부터 진송 박사과정생, 권준화 박사, 최승목 박사, 엄광섭 교수, 서민호 교수)
국립부경대학교 나노융합공학전공 서민호 교수와 한국재료연구원 최승목 박사, 광주과학기술원(GIST) 엄광섭 교수 연구팀이 세계 최초로 개발한 신 탄소물질을 전극의 제조 공정에 첨가제로 활용해 상용 수준의 고분자전해질연료전지 시스템의 내구성을 획기적으로 높이는 데 성공했다.
친환경 고효율 전지로 주목받는 고분자전해질연료전지는 수소를 연료로 수소산화반응을 통해 전기를 생산하고, 반응 결과물로 물만 배출하는 발전 장치다. 하지만 기존 고분자전해질연료전지 시스템에서는 시동 온/오프 과정에서 1.4V 이상의 높은 전압이 발생해 촉매층의 탄소 부식이 가속화되고, 이에 따라 촉매층 붕괴 및 산소환원반응 시 생성되는 물이 전극 내부에 넘치는 현상(water flooding)으로 내구성이 급격히 감소하는 문제가 있었다.
서민호 교수 연구팀은 고탄소 내부식성을 가진 신 탄소물질을 전극 내 첨가제로 활용, 탄소 부식으로 인한 연료전지 내구성 저하를 효과적으로 개선했다. 이번 연구에서 활용된 플루오린 도핑 그래핀나노리본과 탄소나노튜브 복합체(F-GNR@CNT)는 기존 그래핀나노리본 산화물의 탄소 부식 취약성을 극복하기 위해 개발됐다.
기존 그래핀 나노리본 산화물은 합성 과정에서 강한 화학적 산화로 인해 산소 기능기가 풍부해지며, 많은 결함 및 경계 부위에서의 불안정성으로 연료전지 운전 중 전기화학적 탄소 부식에 매우 취약해진다. 서민호 교수 연구팀은 산화도를 조절해 고내부식성을 가진 탄소나노튜브 복합체를 합성하고, 플루오린 도핑을 위한 열처리 공정을 통해 안정적인 탄소-플루오린 결합을 형성했다.
서민호 교수 연구팀은 한국재료연구원 최승목 박사, 한국에너지기술연구원 최영우 박사 연구팀과 함께 F-GNR@CNT 복합체를 극소량 첨가하는 전극 최적화 공정 기술을 개발해 전극을 제조했다.
GIST 엄광섭 교수팀과 함께 이 전극의 전기화학적 탄소 부식 가속화 내구성을 평가한 결과, 기존 촉매층 전극의 물질 전달 구간에서 열화율은 약 85%였지만, 신 탄소물질을 첨가한 전극은 약 40%의 열화율을 보이는 것으로 나타나 매우 높은 전기화학적 탄소 부식 저항성을 확인했다.
서민호 교수 연구팀은 밀도범함수이론(DFT)을 통해 탄소 부식 저항성이 높아지는 이론적 메커니즘도 규명했다. 그래핀나노리본과 탄소나노튜브 구조를 모델링하고, 플루오린 도핑 유무에 따른 탄소 부식 요인인 물과 산소 원자와의 흡착 에너지를 계산한 결과, 플루오린 도핑된 그래핀나노리본 및 탄소나노튜브 구조에서 흡착에너지가 낮아 탄소 부식 저항성이 개선될 수 있음을 제시했다.
연구책임자인 서민호 교수는 “실험과 계산과학의 조합을 통해 입증된 플루오린 도핑 그래핀나노리본 및 탄소나노튜브 복합체는 전극 내 첨가제로 사용될 경우, 고내구성의 수소연료전지를 효율적이고 손쉽게 개발할 수 있는 중요한 전략이 될 것.”이라고 밝혔다.
이번 연구성과는 국립부경대 신진연구자 도전연구, 한국에너지기술평가원, 한국산업기술기획평가원 및 한국재료연구원의 기본사업의 지원을 받아 수행됐다. 연구결과는 국제학술지 <Advanced Science>에 진송 박사과정생(한국재료연구원·GIST), 권준화 박사(GIST)가 제1 저자로, 최승목 박사와 엄광섭·서민호 교수가 교신저자로 게재했다.
한편 연구팀은 신규 고내구 탄소 담지체 및 나노입자구조 제어 등 촉매 원천기술 및 전극화 공정 개발로 고분자전해질연료전지 시스템의 성능 및 안정성 향상을 위한 후속 연구를 진행하고 있다. <부경투데이>
△ 플루오린이 도핑된 그래핀나노리본 및 탄소나노튜브 복합체 합성 과정 모식도
△ 고분자전해질연료전지 시스템의 전기화학적 탄소부식 가속수명시험 평가 시, 기존 전극 도입(左) 및 본 연구 제안된 전극 도입(右) 시 주사전자현미경 및 성능 열화율 그래프
△ 플루오린 도핑 및 탄소나노뷰트 복합체 도입에 의한 밀도범함수을 통한 탄소부식 인자(물, 산소원자)와의 흡착에너지 변화 이론 계산
Pukyong National University · Korea Institute of Materials Science · GIST, Develop Technology to Enhance the Lifespan of Hydrogen Fuel Cells
- Development of New Carbon Material Additives for Electrodes… Significantly Improved the Durability of Polymer Electrolyte Membrane Fuel Cells
Professor Seo Min-ho from the Department of Nanotechnology Engineering at Pukyong National University, Dr. Choi Seung-mok from the Korea Institute of Materials Science, and Professor Eom Kwang-seop from the Gwangju Institute of Science and Technology (GIST) research team have successfully enhanced the durability of a commercial-grade polymer electrolyte fuel cell system by utilizing a newly developed carbon material, which was created for the first time globally, as an additive in the electrode manufacturing process.
Polymer electrolyte membrane fuel cells, which are gaining attention as environmentally friendly and high-efficiency batteries, generate electricity by using hydrogen as fuel through a hydrogen oxidation reaction, emitting only water as a reaction product. However, in conventional polymer electrolyte fuel cell systems, the start-up and shut-down processes generate high voltages above 1.4V, which accelerates carbon corrosion in the catalyst layer. This leads to the collapse of the catalyst layer and the phenomenon of water accumulation inside the electrodes due to the water produced during the oxygen reduction reaction (water flooding), which caused a problem with significant reduction in durability.
Professor Seo Min-ho's research team effectively improved the decline in durability of fuel cells caused by carbon corrosion by utilizing a new carbon material with high carbon corrosion resistance as an additive in the electrodes. The fluorine-doped graphene nanoribbons and carbon nanotube composite (F-GNR@CNT) used in this study were developed to overcome the carbon corrosion vulnerability of existing graphene nanoribbon oxides.
Existing graphene nanoribbon oxides become enriched with oxygen functional groups due to strong chemical oxidation during the synthesis process, resulting in significant defects and instability at the boundary regions, making them highly susceptible to electrochemical carbon corrosion during fuel cell operation. Professor Seo Min-ho’s research team synthesized a carbon nanotube composite with high corrosion resistance by controlling the oxidation level and formed stable carbon-fluorine bonds through a heat treatment process for fluorine doping.
Professor Seo Min-ho’s research team developed an electrode manufacturing technology that optimizes the process of adding a minimal amount of the F-GNR@CNT composite in collaboration with Dr. Choi Seung-Mok from the Korea Institute of Materials Science and Dr. Choi Young-Woo from the Korea Institute of Energy Technology and manufactured the electrodes.
In collaboration with Professor Eom Kwang-Seob’s research team from GIST, the durability of accelerated electrochemical carbon corrosion of these electrodes was evaluated, and the results indicated that the degradation rate in the mass transport region of the existing catalyst layer electrode was approximately 85%, while the electrode with the added new carbon material exhibited a degradation rate of about 40%, confirming a very high resistance to electrochemical carbon corrosion.
The principal investigator, Professor Seo Min-ho, stated that “the fluorine-doped graphene nanoribbon and carbon nanotube composite, proven through a combination of experiments and computational science, will be an important strategy for efficiently and easily developing high-durability hydrogen fuel cells when used as an additive in electrodes.
This research achievement was carried out with support from the Pukyong National University’s Young Researcher Challenge Research, the Korea Energy Technology Evaluation Institute, the Korea Industrial Technology Planning and Evaluation Institute, and the fundamental projects of the Korea Institute of Materials Science. The research results were published in the international journal <Advanced Science> with Ph.D. student Jin Song (Korea Institute of Materials Science·GIST) and Dr. Kwon Jun-Hwa(GIST) as the first authors, and Dr. Choi Seung-Mok and professors Eom Kwang-Seob and Seo Min-ho as corresponding authors.
Meanwhile, the research team is conducting follow-up studies to enhance the performance and stability of the polymer electrolyte membrane fuel cell system through the development of catalyst foundational technologies and electrode fabrication processes, including new high-durability carbon supports and nanoparticle structure control.<Pukyong Today>